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6 Diatonic scales 
and tuning

this chapter describes various scales, intervals and systems of tuning. 
Most of the scales are commonly used, some of them less so. It opens by 
introducing the music theory involved; the diatonic major scale, intervals and 
the concept of consonance and dissonance. For centuries there has been much 
debate about different scales and tunings with many eminent mathematicians, 
scientists and musicians across Europe devising and analysing scales. What 
follows focuses on the three main systems that evolved; the Pythagorean 
scale, just intonation and equal temperament. It covers the mathematical and 
scientific principles involved such as ratios, square roots and irrational numbers, 
the harmonic series and the circle of 5ths. 

The diatonic major scale, intervals, consonance and dissonance

A scale is a pattern of notes arranged in order of pitch from low to high (or 
vice versa) with specified distances or intervals between them. An interval 
is the distance between two notes and, in Western music, these are usually 
measured in numbers of tones or semitones. In this way from C up to D or 
down to B is a 2nd, another step from C up to E or down to A makes a 3rd, 
and so on.

Major and minor scales are known as diatonic scales and are built on a 
pattern of seven notes within an octave span. All major scales are built on the 
following pattern
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Tone Tone Semitone Tone Tone Tone Semitone 

The semitones come between the 3rd and 4th degrees of the scale and the 
7th and octave. Here is the scale of C major. It uses only the white notes on 
the keyboard.

V V V V V V V
tone tone semitone tone tone tone semitone

The major scale can be reproduced at any pitch i.e. it can start on any note. 
The following shows the names of all the intervals found between the tonic 
(key-note) of a major key and the other degrees of the scale. This serves as a 
useful standard by which other intervals can be worked out.

unison
major 
2nd 

major 
3rd

perfect 
4th

perfect 
5th

major 
6th

major 
7th

octave

The character of different intervals is often referred to in terms of consonance 
and dissonance. Consonant intervals feel relatively stable and do not need to 
resolve to another interval. Major and minor 3rds and 6ths, perfect 5ths and 
octaves are all consonant intervals. Two voices producing the same pitch are 
said to be in unison. Dissonant intervals feel somewhat unstable, as though 
one of the notes needs to move up or down to resolve into a consonance.  The 
major 7th, for example, feels as though it needs to resolve upwards, and the 
minor 7th feels as though it needs to resolve downwards. Major and minor 
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2nds, perfect 4ths, major and minor 7ths and all augmented and diminished 
intervals are dissonant. Consonance is often loosely defined as being 
pleasing to the ear, dissonance being the antithesis, unstable and needing 
resolution. These definitions, however, should be treated with caution: the 
pleasing/displeasing notion depends on aesthetic preferences and implies 
a psychoacoustic judgment, whereas the notion of resolution of tension 
depends upon a familiarity with Western tonal harmony. 

The Pythagorean scale

One of the earliest recorded musical scales was the Pythagorean scale. 
Pythagoras, the Greek mathematician and philosopher lived in the second 
half of the 6th century BCE. Although the system of construction of this 
scale existed long before his time, the term Pythagorean scale came about 
because of his theoretical justification in mathematical terms. Apparently, 
in passing a blacksmith’s forge, Pythagoras heard different musical intervals 
in the striking of hammers against the anvils. Hammers of different weights 
struck simultaneously produced different consonant and dissonant intervals, 
so, for example, a hammer weighing half as much as another, a ratio of 2:1, 
produces a note an octave higher. Pythagoras went on to deduce from this 
that there was a relationship between consonant sounds and simple ratios 
and investigated further by carrying out a series of experiments with other 
bodies; water-filled glasses, strings, bells and pipes. The results pointed to 
unchanging relationships between the dimensions of the instruments used 
and the notes they produced. The ability to express these relationships 
numerically made it possible to analyse scales. 

Using a monochord, a single-string instrument said to have been his 
invention, Pythagoras discovered that when a string is stopped half way 
the shorter string vibrates with twice the frequency and sounds an octave 
higher. Several intervals can be identified in the ways that they correspond 
to simple ratios of sound wavelengths or frequencies. So, for example, an 
octave is identified by the ratio 2:1 because the frequency of the upper note 
is twice that of the lower note, the interval of a 5th can be produced by the 
ratio 3:2 and a 4th by the ratio 4:3 From this the Pythagorean scale can 
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be constructed by taking a note and producing others related to it through 
simple whole number ratios.94 

In order to find the ratios of further intervals, Pythagoras multiplied two 
ratios together. As we have seen, an octave uses the ratio 2:1 and a 5th uses the 
ratio 3:2. Going up an octave and then down a 5th produces a 4th. We know 
that the 4th uses the ratio 4:3 and it follows that this can be calculated by 1/2 
x 3/2 = 3/4. Using this principle, other degrees of the scale can be determined 
(see Table 1). So for example, if W = 9/8, then 1/1 x W = 9/8, 9/8 x W = 
81/64 and so on. Table 1 shows the ratios used in the Pythagorean scale. 

Table 1 – Ratios of each note to the lowest note used in the Pythagorean scale

Degree of scale Interval Ratio
1 Unison 1
2 Major 2nd 9/8
3 Major 3rd 81/64
4 Perfect 4th 4/3
5 Perfect 5th 3/2
6 Major 6th 27/16
7 Major 7th 243/128
8 = 1 - C Octave 2/1

Table 1 gives the ratio of each note to the lowest note, the fundamental. In 
order to calculate the ratio between the notes, that is the intervals between 
them, we take the ratio of each note to the one preceding it. The result can 
be seen in Table 2. 

94 This rests on the theory of numerical ratios presented in books 7–9 of Euclid’s Elements.
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Table 2 – Ratios of each note to the one preceding it in the Pythagorean scale

Degree of scale Interval Ratio
1
2 tone 9/8
3 tone 9/8
4 semitone 256/243
5 tone 9/8
6 tone 9/8
7 tone 9/8
8 semitone 256/243

There is an elegant simplicity in the way that this use of simple ratios leads 
to the construction of the diatonic scale. This simplicity accords with 
the ideals of the philosophy promulgated by Pythagoras and many of his 
contemporaries which sought to explain the nature of the universe through 
numbers, ratios and proportions. Music theory too was mathematically 
based dealing with ratios, proportions and number relations. However, there 
are several flaws within this Pythagorean method of calculation:  not all of 
the intervals of the scale can be produced accurately by strict Pythagorean 
methods; they do not satisfy the properties of the circle of 5ths (see Figure 
1); and the intervals do not always match the acoustical properties found in 
the harmonic series. 

Taking each of these problems in turn, Table 1 shows us that all five steps 
of a tone are in the ratio of W =  9:8 and the two semitones are in the ratio 
of H = 256:243. However, two half steps in this Pythagorean tuning do not 
add up to one whole step.95 

H2 = 256/243 x 256/243 = 2 1̀6/310 ≠ 32/23 = W

95 Gareth Roberts. From Music to Mathematics {Exploring the connections}. (Baltimore: John 
Hopkins University Press, 2016): 121.
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This discrepancy is referred to as the ‘Pythagorean comma’, defined as the 
gap between one whole step and two half steps. It can be found by dividing 
the ratio for a whole step by the ratio for two half steps.

W/H2 = 312/219 ≈ 1.013643265

This means that raising the pitch by two half steps produces a slightly smaller 
interval than raising it by one whole step. 

The next problem with the Pythagorean scale is related to the circle of 
5ths. The circle of 5ths is represented by a circular diagram demonstrating 
the relationship between different keys (see Figure 1). 

Circle of 5ths

It shows a series of chords whose roots are each a 5th higher than the previous 
chord e.g. C-G-D-A (see Figure 1). From any starting note the pitch is raised 
repeatedly until the starting point is returned to and the circle closes. This is 
the equivalent to raising the pitch by seven octaves. However, using the 
specified Pythagorean ratios, the span of seven octaves is not equivalent to 
twelve 5ths and there is a need to introduce a new note for each octave to fill 
the gap. This means that rather than returning to the starting point and 
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closing the circle, the figure becomes an ever-increasing spiral (see Figure 2). 
The shaded area denotes the Pythagorean comma.

Spiral of 5ths

The harmonic series

Another problem lies in the correlation of the Pythagorean scale with the 
harmonic series. When a vibrating object, such as a string, is set in motion, it 
vibrates both as a whole, with a frequency called the fundamental (the lowest 
note or the first harmonic) and, with lesser intensity, in other sections as well. 
The harmonics (or overtones) generated may be represented in an ordered 
series called the harmonic series, a set of frequencies which are successive 
integer multiples of the fundamental (see Figure 3). 
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Figure 3 – The harmonic series

The frequencies are related by simple whole number ratios. In general, the 
nth harmonic of a series has a frequency which is n times the fundamental 
frequency. The harmonic series defines many of our intervals. As we have 
seen, the calculations used to make the Pythagorean scale were very limited 
and they missed out some of the most important ratios found in the harmonic 
series such as the major 3rd (5:4) and the minor 3rd (6:5). In this way the 
Pythagorean scale was out of sync with the laws of acoustics.96

Nevertheless, use of the Pythagorean scale persisted for hundreds of years. 
Another system of tuning known as equal temperament avoids the Pythagorean 
comma, but it was many years before it was in common use. The evolution of 
polyphonic music from the twelfth century onwards led to experimentation 
with alternative systems of tunings. Polyphony used several instruments or 
voices and music became more complicated harmonically; music was no longer 
largely restricted to the predominant use of three harmonic intervals - the 
octave, 4th and 5th – and 3rds and 6ths were gradually adopted.

Just intonation

Just intonation is based upon the first six notes of the harmonic series, the 
word ‘ just’ used because this alignment is considered to be more acoustically 
pure or true. The ratios used are based on smaller numbers than those of the 
Pythagorean scale (see Table 3). The just major 3rd uses a ratio of 5:4, rather 
than 81:64, which is more consonant than its Pythagorean counterpart. 
Similarly the just major 6th is 5:3 (rather than 27:16) and the major 7th is 
15:8 (rather than 243:128).

96 Eli Maor. Music by the Numbers. (Princeton: Princeton University Press, 2018): 19.
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Table 3 – Ratios used in just intonation

Degree of scale Interval Ratio
1 Unison 1
2 Major 2nd 9/8
3 Major 3rd 5/4
4 Perfect 4th 4/3
5 Perfect 5th 3/2
6 Major 6th 5/3
7 Major 7th 15/8
8 = 1 Octave 2/1

The idea of using the ratio of 5:4 was first suggested by two medieval British 
theorists, Theinred of Dover and Walter Odington and in ensuing decades 
there was much debate about different tunings by leading scientists and 
mathematicians across Europe, both the German mathematician Johannes 
Kepler (1571-1630) and the English mathematician Isaac Newton (1642-
1727) devised scales. Kepler devised a scale derived from the ratios of 
planetary orbit minimum and maximum speeds and Newton devised a seven 
note diatonic scale based on the seven colour spectrum of the rainbow.97 The 
French polymath Marin Mersenne (1588-1648) is credited with being the 
first to formulate rules governing vibrating strings, and the first to discern 
the nature of harmonics related to a fundamental note. In the search for 
a more consonant scale, the eighteenth century Swiss mathematician, 
Leonhard Euler, developed an elaborate mathematical theory which was 
based upon just-intonation ratios. 

Although just intonation conforms more closely to the laws of acoustics 
than the Pythagorean scale, it is not without problems; the circle of 5ths is 
still not closed and there are two different ratios for the whole step within 
the scale. The ratio for the step between the first and 2nd degrees (a tone) 
is 9:8 whereas the step of a tone between the 2nd and 3rd degrees has a 

97 Neil Bibby. Music and Mathematics. From Pythagoras to Fractals.  (Oxford: Oxford University 
Press, 2003). 
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ratio of 10:9. The gap between these two different steps (9/8 x 10/9) is the 
ratio 81/80 which is known as the ‘syntonic comma’.98 Although this is not 
discernible to all listeners and does not pose a problem for instruments 
that have a continuous range of notes such as violins, for instruments with 
fixed keys or holes it makes playing in more than one key often difficult and 
sometimes impossible. Keyboard instruments were particularly problematic 
in this respect. The celebrated German/Viennese piano maker Johann 
Jakob Könnicke (1756-1811) attempted to solve this problem when in 1796 
he invented the ‘Harmonie-Hammerflügel’, a keyboard instrument with 
six diatonic manuals that divided the normal 12-key octave into 31 notes  
to enable a purer tuning.  Unfortunately it was difficult to build, as well as 
difficult to keep in tune and to perform on.99

Equal temperament 

The answer to this problem was to be found in equal temperament tuning. 
The word tempered refers to the fact that just intonation has been adjusted 
or compromised. It is so named because the scale is divided into 12 equal 
semitones. In this system, the circle of 5ths is closed. This means that there 
are no discrepancies between different keys, all the intervals across keys are 
equivalent, making it possible to play music with multiple key changes and 
chromatic harmony. 

Rather than using the whole number ratios found in the Pythagorean scale 
and just intonation, the Flemish mathematician Simon Stevin (1548-1620) 
came up with the idea of letting the half step (semitone) equal 12√2, the 12th 

root of 2 which can also be written as 22/12. In other words, when multiplied 
by itself 12 times, 22/12= 2. This is an irrational number in contrast with the 
rational numbers used in the aforementioned systems. The Pythagoreans 
were strong believers in the importance of rational numbers, those numbers 
which are either integers or can be written as a ratio (or quotient) of two 
integers. An irrational number is a real number which cannot be expressed as 

98 Roberts,  From Music to Mathematics, 129.
99 Michael Latcham. ‘Könnicke, Johann Jakob’ in Grove Music online. 
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an integer or as a quotient of two integers. Irrational numbers have infinite, 
non-repeating decimals. 

Having established 22/12 as the interval for a half step, Stevin went on to 
define all the other intervals by multipliers of this step (see Table 4). The 
numbers in the 3rd column are easily found by calculating the number of 
half steps in each interval. 

Table 4 – Ratios used in Stevin’s equal temperament

Degree of scale Interval Ratio
1- -C Unison 1
2 - D Major 2nd 22/12

3 - E Major 3rd 24/12

4 - F Perfect 4th 25/12

5 - G Perfect 5th 27/12

6 - A Major 6th 29/12

7 - B Major 7th 211/12

8 = 1 - C Octave 2

Marin Mersenne (1588-1648) made an important contribution to the theory 
of tuning and was an advocate of equal temperament. He also reassessed 
the nature of consonance and dissonance. The most famous early work to 
use the system and exploit all 24 keys is J S Bach’s Well-Tempered Clavier 
– the two books were written in 1722 and 1738-1744 each comprising a 
prelude and fugue in each major and minor key. It took a long time for equal 
temperament to be adopted across Western music; as late as 1851, not one 
of the British organs at the Great Exhibition was equally tempered.100 Equal 
temperament is now widely thought of as the normal tuning of the Western 
12-note chromatic scale. Table 5 compares the frequencies of notes in a scale 
of A major according to the ratios of the Pythagorean scale and the equal 
tempered scale measured in Hertz.

100 Bibby, Music and Mathematics, 27.
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Frequency expresses the number of repetitions during a certain length of 
time. It is measured in time units, usually seconds, and called Hertz after the 
German physicist Heinrich Hertz (1857–1894).  A tuning fork that vibrates 
440 times back and forth in one second, concert A, has a frequency at 440 
Hz.101 The set of frequencies 100, 200, 300, 400, 500 Hz … is a harmonic 
series whose fundamental is 100 Hz and whose 5th harmonic is 500 Hz.

Table 5 – A comparison of frequencies used in equal temperament and the Pythagorean scale

A B C# D E F# G# A

Equal temperament 220.0 246.9 277.2 293.7 329.6 370.0 415.3 440.0

Pythagorean scale 220.0 247.5 278.4 293.3 330.0 371.3 417.7 440.0

Table 6 shows the approximate differences in frequencies for a whole step 
(tone) and half step (semitone) used in the equal tempered scale and the 
Pythagorean scale.

Table 6 – A comparison of the frequencies for a tone and a semitone 

used in equal temperament and the Pythagorean scale

tone semitone

Equal temperament 21/12 = 1.122 22/12 = 1.0595

Pythagorean 9/8 = 1.125 256/243 = 1.0535

Another commonly used way of measuring the intervals in different tuning 
systems is through the use of cents. Cents are based on a logarithmic scale 
and there are 100 cents in an octave. The system was introduced in the late 
nineteenth century by the English mathematician Alexander Ellis (1804-
90). In his analysis of the scales used in various European musical traditions, 
he showed that the diversity of different systems could not be explained by a 
single physical law.

101 Concert A is the standard tuning note in the UK and USA. Until the nineteenth century 
musical pitch was not standardized and the levels varied widely across Europe. Nowadays ensembles 
which specialise in music of the Baroque period have agreed on a standard of A = 415 Hz.
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Table 7 gives a comparison of the three tuning systems discussed so far 
measured in cents. It can be seen that although equal temperament is a close 
approximation to the perfect 5th is significantly sharper than a major 3rd in 
equal temperament. 

Table 7 – A comparison of the frequencies used in the Pythagorean 
scale, equal temperament and just intonation measured in cents

Scale degree Interval 
Pythagorean
scale 

Equal 
temperament

Just
intonation

1 Unison 0 0 0

2 Major 2nd 203.9 203.9 200

3 Major 3rd 407.8 386.3 400

4 Perfect 4th 498.0 498.0 500

5 Perfect 5th 702.0 702.0 700

6 Major 6th 905.9 884.4 900

7 Major 7th 1109.8 1088.3 1100

8 = 1 Octave 1200 1200 1200

Moving away from the seven-note diatonic major scale with its use of tones 
and semitones, the next chapter goes on to look at a variety of other scales 
using a different number of notes and often including the interval of a 
microtone.




